Quantum Otto cycle with inner friction: finite-time and disorder effects
نویسندگان
چکیده
منابع مشابه
The Quantum Harmonic Otto Cycle
The quantum Otto cycle serves as a bridge between the macroscopic world of heat engines and the quantum regime of thermal devices composed from a single element. We compile recent studies of the quantum Otto cycle with a harmonic oscillator as a working medium. This model has the advantage that it is analytically trackable. In addition, an experimental realization has been achieved, employing a...
متن کاملOccurrence of discontinuities in the performance of finite-time quantum Otto cycles.
We study a quantum Otto cycle in which the strokes are performed in finite time. The cycle involves energy measurements at the end of each stroke to allow for the respective determination of work. We then optimize for the work and efficiency of the cycle by varying the time spent in the different strokes and find that the optimal value of the ratio of time spent on each stroke goes through sudd...
متن کاملIrreversible work and inner friction in quantum thermodynamic processes.
We discuss the thermodynamics of closed quantum systems driven out of equilibrium by a change in a control parameter and undergoing a unitary process. We compare the work actually done on the system with the one that would be performed along ideal adiabatic and isothermal transformations. The comparison with the latter leads to the introduction of irreversible work, while that with the former l...
متن کاملFinite-time behavior of inner systems
In this paper, we investigate how nonminimum phase characteristics of a dynamical system affect its controllability and tracking properties. For the class of linear time-invariant dynamical systems, these characteristics are determined by transmission zeros of the inner factor of the system transfer function. The relation between nonminimum phase zeros and Hankel singular values of inner system...
متن کاملMore bang for your buck: Super-adiabatic quantum engines
The practical untenability of the quasi-static assumption makes any realistic engine intrinsically irreversible and its operating time finite, thus implying friction effects at short cycle times. An important technological goal is thus the design of maximally efficient engines working at the maximum possible power. We show that, by utilising shortcuts to adiabaticity in a quantum engine cycle, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: New Journal of Physics
سال: 2015
ISSN: 1367-2630
DOI: 10.1088/1367-2630/17/7/075007